Files
PGPy-3_13_patch/pgpy/packet/subpackets/signature.py
2019-11-01 16:35:34 -07:00

1134 lines
33 KiB
Python

""" signature.py
Signature SubPackets
"""
import binascii
import calendar
from datetime import datetime
from datetime import timedelta
import six
from .types import EmbeddedSignatureHeader
from .types import Signature
from ...constants import CompressionAlgorithm
from ...constants import Features as _Features
from ...constants import HashAlgorithm
from ...constants import KeyFlags as _KeyFlags
from ...constants import KeyServerPreferences as _KeyServerPreferences
from ...constants import NotationDataFlags
from ...constants import PubKeyAlgorithm
from ...constants import RevocationKeyClass
from ...constants import RevocationReason
from ...constants import SymmetricKeyAlgorithm
from ...decorators import sdproperty
from ...types import Fingerprint
__all__ = ['URI',
'FlagList',
'ByteFlag',
'Boolean',
'CreationTime',
'SignatureExpirationTime',
'ExportableCertification',
'TrustSignature',
'RegularExpression',
'Revocable',
'KeyExpirationTime',
'PreferredSymmetricAlgorithms',
'RevocationKey',
'Issuer',
'NotationData',
'PreferredHashAlgorithms',
'PreferredCompressionAlgorithms',
'KeyServerPreferences',
'PreferredKeyServer',
'PrimaryUserID',
'Policy',
'KeyFlags',
'SignersUserID',
'ReasonForRevocation',
'Features',
'EmbeddedSignature',
'IssuerFingerprint',
'IntendedRecipient',
'AttestedCertifications']
class URI(Signature):
@sdproperty
def uri(self):
return self._uri
@uri.register(str)
@uri.register(six.text_type)
def uri_str(self, val):
self._uri = val
@uri.register(bytearray)
def uri_bytearray(self, val):
self.uri = val.decode('latin-1')
def __init__(self):
super(URI, self).__init__()
self.uri = ""
def __bytearray__(self):
_bytes = super(URI, self).__bytearray__()
_bytes += self.uri.encode()
return _bytes
def parse(self, packet):
super(URI, self).parse(packet)
self.uri = packet[:(self.header.length - 1)]
del packet[:(self.header.length - 1)]
class FlagList(Signature):
__flags__ = None
@sdproperty
def flags(self):
return self._flags
@flags.register(list)
@flags.register(tuple)
def flags_list(self, val):
self._flags = list(val)
@flags.register(int)
@flags.register(CompressionAlgorithm)
@flags.register(HashAlgorithm)
@flags.register(PubKeyAlgorithm)
@flags.register(SymmetricKeyAlgorithm)
def flags_int(self, val):
if self.__flags__ is None: # pragma: no cover
raise AttributeError("Error: __flags__ not set!")
self._flags.append(self.__flags__(val))
@flags.register(bytearray)
def flags_bytearray(self, val):
self.flags = self.bytes_to_int(val)
def __init__(self):
super(FlagList, self).__init__()
self.flags = []
def __bytearray__(self):
_bytes = super(FlagList, self).__bytearray__()
_bytes += b''.join(self.int_to_bytes(b) for b in self.flags)
return _bytes
def parse(self, packet):
super(FlagList, self).parse(packet)
for i in range(0, self.header.length - 1):
self.flags = packet[:1]
del packet[:1]
class ByteFlag(Signature):
__flags__ = None
@sdproperty
def flags(self):
return self._flags
@flags.register(set)
@flags.register(list)
def flags_seq(self, val):
self._flags = set(val)
@flags.register(int)
@flags.register(_KeyFlags)
@flags.register(_Features)
def flags_int(self, val):
if self.__flags__ is None: # pragma: no cover
raise AttributeError("Error: __flags__ not set!")
self._flags |= (self.__flags__ & val)
@flags.register(bytearray)
def flags_bytearray(self, val):
self.flags = self.bytes_to_int(val)
def __init__(self):
super(ByteFlag, self).__init__()
self.flags = []
def __bytearray__(self):
_bytes = super(ByteFlag, self).__bytearray__()
_bytes += self.int_to_bytes(sum(self.flags))
# null-pad _bytes if they are not up to the end now
if len(_bytes) < len(self):
_bytes += b'\x00' * (len(self) - len(_bytes))
return _bytes
def parse(self, packet):
super(ByteFlag, self).parse(packet)
for i in range(0, self.header.length - 1):
self.flags = packet[:1]
del packet[:1]
class Boolean(Signature):
@sdproperty
def bflag(self):
return self._bool
@bflag.register(bool)
def bflag_bool(self, val):
self._bool = val
@bflag.register(bytearray)
def bflag_bytearray(self, val):
self.bool = bool(self.bytes_to_int(val))
def __init__(self):
super(Boolean, self).__init__()
self.bflag = False
def __bytearray__(self):
_bytes = super(Boolean, self).__bytearray__()
_bytes += self.int_to_bytes(int(self.bflag))
return _bytes
def __bool__(self):
return self.bflag
def __nonzero__(self):
return self.__bool__()
def parse(self, packet):
super(Boolean, self).parse(packet)
self.bflag = packet[:1]
del packet[:1]
class CreationTime(Signature):
"""
5.2.3.4. Signature Creation Time
(4-octet time field)
The time the signature was made.
MUST be present in the hashed area.
"""
__typeid__ = 0x02
@sdproperty
def created(self):
return self._created
@created.register(datetime)
def created_datetime(self, val):
self._created = val
@created.register(int)
def created_int(self, val):
self.created = datetime.utcfromtimestamp(val)
@created.register(bytearray)
def created_bytearray(self, val):
self.created = self.bytes_to_int(val)
def __init__(self):
super(CreationTime, self).__init__()
self.created = datetime.utcnow()
def __bytearray__(self):
_bytes = super(CreationTime, self).__bytearray__()
_bytes += self.int_to_bytes(calendar.timegm(self.created.utctimetuple()), 4)
return _bytes
def parse(self, packet):
super(CreationTime, self).parse(packet)
self.created = packet[:4]
del packet[:4]
class SignatureExpirationTime(Signature):
"""
5.2.3.10. Signature Expiration Time
(4-octet time field)
The validity period of the signature. This is the number of seconds
after the signature creation time that the signature expires. If
this is not present or has a value of zero, it never expires.
"""
__typeid__ = 0x03
@sdproperty
def expires(self):
return self._expires
@expires.register(timedelta)
def expires_timedelta(self, val):
self._expires = val
@expires.register(int)
def expires_int(self, val):
self.expires = timedelta(seconds=val)
@expires.register(bytearray)
def expires_bytearray(self, val):
self.expires = self.bytes_to_int(val)
def __init__(self):
super(SignatureExpirationTime, self).__init__()
self.expires = 0
def __bytearray__(self):
_bytes = super(SignatureExpirationTime, self).__bytearray__()
_bytes += self.int_to_bytes(int(self.expires.total_seconds()), 4)
return _bytes
def parse(self, packet):
super(SignatureExpirationTime, self).parse(packet)
self.expires = packet[:4]
del packet[:4]
class ExportableCertification(Boolean):
"""
5.2.3.11. Exportable Certification
(1 octet of exportability, 0 for not, 1 for exportable)
This subpacket denotes whether a certification signature is
"exportable", to be used by other users than the signature's issuer.
The packet body contains a Boolean flag indicating whether the
signature is exportable. If this packet is not present, the
certification is exportable; it is equivalent to a flag containing a
1.
Non-exportable, or "local", certifications are signatures made by a
user to mark a key as valid within that user's implementation only.
Thus, when an implementation prepares a user's copy of a key for
transport to another user (this is the process of "exporting" the
key), any local certification signatures are deleted from the key.
The receiver of a transported key "imports" it, and likewise trims
any local certifications. In normal operation, there won't be any,
assuming the import is performed on an exported key. However, there
are instances where this can reasonably happen. For example, if an
implementation allows keys to be imported from a key database in
addition to an exported key, then this situation can arise.
Some implementations do not represent the interest of a single user
(for example, a key server). Such implementations always trim local
certifications from any key they handle.
"""
__typeid__ = 0x04
class TrustSignature(Signature):
"""
5.2.3.13. Trust Signature
(1 octet "level" (depth), 1 octet of trust amount)
Signer asserts that the key is not only valid but also trustworthy at
the specified level. Level 0 has the same meaning as an ordinary
validity signature. Level 1 means that the signed key is asserted to
be a valid trusted introducer, with the 2nd octet of the body
specifying the degree of trust. Level 2 means that the signed key is
asserted to be trusted to issue level 1 trust signatures, i.e., that
it is a "meta introducer". Generally, a level n trust signature
asserts that a key is trusted to issue level n-1 trust signatures.
The trust amount is in a range from 0-255, interpreted such that
values less than 120 indicate partial trust and values of 120 or
greater indicate complete trust. Implementations SHOULD emit values
of 60 for partial trust and 120 for complete trust.
"""
__typeid__ = 0x05
@sdproperty
def level(self):
return self._level
@level.register(int)
def level_int(self, val):
self._level = val
@level.register(bytearray)
def level_bytearray(self, val):
self.level = self.bytes_to_int(val)
@sdproperty
def amount(self):
return self._amount
@amount.register(int)
def amount_int(self, val):
# clamp 'val' to the range 0-255
self._amount = max(0, min(val, 255))
@amount.register(bytearray)
def amount_bytearray(self, val):
self.amount = self.bytes_to_int(val)
def __init__(self):
super(TrustSignature, self).__init__()
self.level = 0
self.amount = 0
def __bytearray__(self):
_bytes = super(TrustSignature, self).__bytearray__()
_bytes += self.int_to_bytes(self.level)
_bytes += self.int_to_bytes(self.amount)
return _bytes
def parse(self, packet):
super(TrustSignature, self).parse(packet)
self.level = packet[:1]
del packet[:1]
self.amount = packet[:1]
del packet[:1]
class RegularExpression(Signature):
"""
5.2.3.14. Regular Expression
(null-terminated regular expression)
Used in conjunction with trust Signature packets (of level > 0) to
limit the scope of trust that is extended. Only signatures by the
target key on User IDs that match the regular expression in the body
of this packet have trust extended by the trust Signature subpacket.
The regular expression uses the same syntax as the Henry Spencer's
"almost public domain" regular expression [REGEX] package. A
description of the syntax is found in Section 8 below.
"""
__typeid__ = 0x06
@sdproperty
def regex(self):
return self._regex
@regex.register(str)
@regex.register(six.text_type)
def regex_str(self, val):
self._regex = val
@regex.register(bytearray)
def regex_bytearray(self, val):
self.regex = val.decode('latin-1')
def __init__(self):
super(RegularExpression, self).__init__()
self.regex = r''
def __bytearray__(self):
_bytes = super(RegularExpression, self).__bytearray__()
_bytes += self.regex.encode()
return _bytes
def parse(self, packet):
super(RegularExpression, self).parse(packet)
self.regex = packet[:(self.header.length - 1)]
del packet[:(self.header.length - 1)]
class Revocable(Boolean):
"""
5.2.3.12. Revocable
(1 octet of revocability, 0 for not, 1 for revocable)
Signature's revocability status. The packet body contains a Boolean
flag indicating whether the signature is revocable. Signatures that
are not revocable have any later revocation signatures ignored. They
represent a commitment by the signer that he cannot revoke his
signature for the life of his key. If this packet is not present,
the signature is revocable.
"""
__typeid__ = 0x07
class KeyExpirationTime(SignatureExpirationTime):
"""
5.2.3.6. Key Expiration Time
(4-octet time field)
The validity period of the key. This is the number of seconds after
the key creation time that the key expires. If this is not present
or has a value of zero, the key never expires. This is found only on
a self-signature.
"""
__typeid__ = 0x09
class PreferredSymmetricAlgorithms(FlagList):
"""
5.2.3.7. Preferred Symmetric Algorithms
(array of one-octet values)
Symmetric algorithm numbers that indicate which algorithms the key
holder prefers to use. The subpacket body is an ordered list of
octets with the most preferred listed first. It is assumed that only
algorithms listed are supported by the recipient's software.
Algorithm numbers are in Section 9. This is only found on a self-
signature.
"""
__typeid__ = 0x0B
__flags__ = SymmetricKeyAlgorithm
class RevocationKey(Signature):
"""
5.2.3.15. Revocation Key
(1 octet of class, 1 octet of public-key algorithm ID, 20 octets of
fingerprint)
Authorizes the specified key to issue revocation signatures for this
key. Class octet must have bit 0x80 set. If the bit 0x40 is set,
then this means that the revocation information is sensitive. Other
bits are for future expansion to other kinds of authorizations. This
is found on a self-signature.
If the "sensitive" flag is set, the keyholder feels this subpacket
contains private trust information that describes a real-world
sensitive relationship. If this flag is set, implementations SHOULD
NOT export this signature to other users except in cases where the
data needs to be available: when the signature is being sent to the
designated revoker, or when it is accompanied by a revocation
signature from that revoker. Note that it may be appropriate to
isolate this subpacket within a separate signature so that it is not
combined with other subpackets that need to be exported.
"""
__typeid__ = 0x0C
@sdproperty
def keyclass(self):
return self._keyclass
@keyclass.register(list)
def keyclass_list(self, val):
self._keyclass = val
@keyclass.register(int)
@keyclass.register(RevocationKeyClass)
def keyclass_int(self, val):
self._keyclass += RevocationKeyClass & val
@keyclass.register(bytearray)
def keyclass_bytearray(self, val):
self.keyclass = self.bytes_to_int(val)
@sdproperty
def algorithm(self):
return self._algorithm
@algorithm.register(int)
@algorithm.register(PubKeyAlgorithm)
def algorithm_int(self, val):
self._algorithm = PubKeyAlgorithm(val)
@algorithm.register(bytearray)
def algorithm_bytearray(self, val):
self.algorithm = self.bytes_to_int(val)
@sdproperty
def fingerprint(self):
return self._fingerprint
@fingerprint.register(str)
@fingerprint.register(six.text_type)
@fingerprint.register(Fingerprint)
def fingerprint_str(self, val):
self._fingerprint = Fingerprint(val)
@fingerprint.register(bytearray)
def fingerprint_bytearray(self, val):
self.fingerprint = ''.join('{:02x}'.format(c) for c in val).upper()
def __init__(self):
super(RevocationKey, self).__init__()
self.keyclass = []
self.algorithm = PubKeyAlgorithm.Invalid
self._fingerprint = ""
def __bytearray__(self):
_bytes = super(RevocationKey, self).__bytearray__()
_bytes += self.int_to_bytes(sum(self.keyclass))
_bytes += self.int_to_bytes(self.algorithm.value)
_bytes += self.fingerprint.__bytes__()
return _bytes
def parse(self, packet):
super(RevocationKey, self).parse(packet)
self.keyclass = packet[:1]
del packet[:1]
self.algorithm = packet[:1]
del packet[:1]
self.fingerprint = packet[:20]
del packet[:20]
class Issuer(Signature):
__typeid__ = 0x10
@sdproperty
def issuer(self):
return self._issuer
@issuer.register(bytearray)
def issuer_bytearray(self, val):
self._issuer = binascii.hexlify(val).upper().decode('latin-1')
def __init__(self):
super(Issuer, self).__init__()
self.issuer = bytearray()
def __bytearray__(self):
_bytes = super(Issuer, self).__bytearray__()
_bytes += binascii.unhexlify(self._issuer.encode())
return _bytes
def parse(self, packet):
super(Issuer, self).parse(packet)
self.issuer = packet[:8]
del packet[:8]
class NotationData(Signature):
__typeid__ = 0x14
@sdproperty
def flags(self):
return self._flags
@flags.register(list)
def flags_list(self, val):
self._flags = val
@flags.register(int)
@flags.register(NotationDataFlags)
def flags_int(self, val):
self.flags += NotationDataFlags & val
@flags.register(bytearray)
def flags_bytearray(self, val):
self.flags = self.bytes_to_int(val)
@sdproperty
def name(self):
return self._name
@name.register(str)
@name.register(six.text_type)
def name_str(self, val):
self._name = val
@name.register(bytearray)
def name_bytearray(self, val):
self.name = val.decode('latin-1')
@sdproperty
def value(self):
return self._value
@value.register(str)
@value.register(six.text_type)
def value_str(self, val):
self._value = val
@value.register(bytearray)
def value_bytearray(self, val):
if NotationDataFlags.HumanReadable in self.flags:
self.value = val.decode('latin-1')
else: # pragma: no cover
self._value = val
def __init__(self):
super(NotationData, self).__init__()
self.flags = [0, 0, 0, 0]
self.name = ""
self.value = ""
def __bytearray__(self):
_bytes = super(NotationData, self).__bytearray__()
_bytes += self.int_to_bytes(sum(self.flags)) + b'\x00\x00\x00'
_bytes += self.int_to_bytes(len(self.name), 2)
_bytes += self.int_to_bytes(len(self.value), 2)
_bytes += self.name.encode()
_bytes += self.value if isinstance(self.value, bytearray) else self.value.encode()
return bytes(_bytes)
def parse(self, packet):
super(NotationData, self).parse(packet)
self.flags = packet[:1]
del packet[:4]
nlen = self.bytes_to_int(packet[:2])
del packet[:2]
vlen = self.bytes_to_int(packet[:2])
del packet[:2]
self.name = packet[:nlen]
del packet[:nlen]
self.value = packet[:vlen]
del packet[:vlen]
class PreferredHashAlgorithms(FlagList):
__typeid__ = 0x15
__flags__ = HashAlgorithm
class PreferredCompressionAlgorithms(FlagList):
__typeid__ = 0x16
__flags__ = CompressionAlgorithm
class KeyServerPreferences(ByteFlag):
__typeid__ = 0x17
__flags__ = _KeyServerPreferences
class PreferredKeyServer(URI):
__typeid__ = 0x18
class PrimaryUserID(Signature):
__typeid__ = 0x19
@sdproperty
def primary(self):
return self._primary
@primary.register(bool)
def primary_bool(self, val):
self._primary = val
@primary.register(bytearray)
def primary_byrearray(self, val):
self.primary = bool(self.bytes_to_int(val))
def __init__(self):
super(PrimaryUserID, self).__init__()
self.primary = True
def __bytearray__(self):
_bytes = super(PrimaryUserID, self).__bytearray__()
_bytes += self.int_to_bytes(int(self.primary))
return _bytes
def __bool__(self):
return self.primary
def __nonzero__(self):
return self.__bool__()
def parse(self, packet):
super(PrimaryUserID, self).parse(packet)
self.primary = packet[:1]
del packet[:1]
class Policy(URI):
__typeid__ = 0x1a
class KeyFlags(ByteFlag):
__typeid__ = 0x1B
__flags__ = _KeyFlags
class SignersUserID(Signature):
__typeid__ = 0x1C
@sdproperty
def userid(self):
return self._userid
@userid.register(str)
@userid.register(six.text_type)
def userid_str(self, val):
self._userid = val
@userid.register(bytearray)
def userid_bytearray(self, val):
self.userid = val.decode('latin-1')
def __init__(self):
super(SignersUserID, self).__init__()
self.userid = ""
def __bytearray__(self):
_bytes = super(SignersUserID, self).__bytearray__()
_bytes += self.userid.encode()
return _bytes
def parse(self, packet):
super(SignersUserID, self).parse(packet)
self.userid = packet[:(self.header.length - 1)]
del packet[:(self.header.length - 1)]
class ReasonForRevocation(Signature):
__typeid__ = 0x1D
@sdproperty
def code(self):
return self._code
@code.register(int)
@code.register(RevocationReason)
def code_int(self, val):
self._code = RevocationReason(val)
@code.register(bytearray)
def code_bytearray(self, val):
self.code = self.bytes_to_int(val)
@sdproperty
def string(self):
return self._string
@string.register(str)
@string.register(six.text_type)
def string_str(self, val):
self._string = val
@string.register(bytearray)
def string_bytearray(self, val):
self.string = val.decode('latin-1')
def __init__(self):
super(ReasonForRevocation, self).__init__()
self.code = 0x00
self.string = ""
def __bytearray__(self):
_bytes = super(ReasonForRevocation, self).__bytearray__()
_bytes += self.int_to_bytes(self.code)
_bytes += self.string.encode()
return _bytes
def parse(self, packet):
super(ReasonForRevocation, self).parse(packet)
self.code = packet[:1]
del packet[:1]
self.string = packet[:(self.header.length - 2)]
del packet[:(self.header.length - 2)]
class Features(ByteFlag):
__typeid__ = 0x1E
__flags__ = _Features
##TODO: obtain subpacket type 0x1F - Signature Target
class EmbeddedSignature(Signature):
__typeid__ = 0x20
@sdproperty
def _sig(self):
return self._sigpkt
@_sig.setter
def _sig(self, val):
esh = EmbeddedSignatureHeader()
esh.version = val.header.version
val.header = esh
val.update_hlen()
self._sigpkt = val
@property
def sigtype(self):
return self._sig.sigtype
@property
def pubalg(self):
return self._sig.pubalg
@property
def halg(self):
return self._sig.halg
@property
def subpackets(self):
return self._sig.subpackets
@property
def hash2(self): # pragma: no cover
return self._sig.hash2
@property
def signature(self):
return self._sig.signature
@property
def signer(self):
return self._sig.signer
def __init__(self):
super(EmbeddedSignature, self).__init__()
from ..packets import SignatureV4
self._sigpkt = SignatureV4()
self._sigpkt.header = EmbeddedSignatureHeader()
def __bytearray__(self):
return super(EmbeddedSignature, self).__bytearray__() + self._sigpkt.__bytearray__()
def parse(self, packet):
super(EmbeddedSignature, self).parse(packet)
self._sig.parse(packet)
class IssuerFingerprint(Signature):
'''
(from RFC4880bis-07)
5.2.3.28. Issuer Fingerprint
(1 octet key version number, N octets of fingerprint)
The OpenPGP Key fingerprint of the key issuing the signature. This
subpacket SHOULD be included in all signatures. If the version of
the issuing key is 4 and an Issuer subpacket is also included in the
signature, the key ID of the Issuer subpacket MUST match the low 64
bits of the fingerprint.
Note that the length N of the fingerprint for a version 4 key is 20
octets; for a version 5 key N is 32.
'''
__typeid__ = 0x21
@sdproperty
def version(self):
return self._version
@version.register(int)
def version_int(self, val):
self._version = val
@version.register(bytearray)
def version_bytearray(self, val):
self.version = self.bytes_to_int(val)
@sdproperty
def issuer_fingerprint(self):
return self._issuer_fpr
@issuer_fingerprint.register(str)
@issuer_fingerprint.register(six.text_type)
@issuer_fingerprint.register(Fingerprint)
def issuer_fingerprint_str(self, val):
self._issuer_fpr = Fingerprint(val)
@issuer_fingerprint.register(bytearray)
def issuer_fingerprint_bytearray(self, val):
self.issuer_fingerprint = ''.join('{:02x}'.format(c) for c in val).upper()
def __init__(self):
super(IssuerFingerprint, self).__init__()
self.version = 4
self._issuer_fpr = ""
def __bytearray__(self):
_bytes = super(IssuerFingerprint, self).__bytearray__()
_bytes += self.int_to_bytes(self.version)
_bytes += self.issuer_fingerprint.__bytes__()
return _bytes
def parse(self, packet):
super(IssuerFingerprint, self).parse(packet)
self.version = packet[:1]
del packet[:1]
if self.version == 4:
fpr_len = 20
elif self.version == 5: # pragma: no cover
fpr_len = 32
else: # pragma: no cover
fpr_len = self.header.length - 1
self.issuer_fingerprint = packet[:fpr_len]
del packet[:fpr_len]
class IntendedRecipient(Signature):
'''
(from RFC4880bis-08)
5.2.3.29. Intended Recipient
(1 octet key version number, N octets of fingerprint)
The OpenPGP Key fingerprint of the intended recipient primary key.
If one or more subpackets of this type are included in a signature,
it SHOULD be considered valid only in an encrypted context, where the
key it was encrypted to is one of the indicated primary keys, or one
of their subkeys. This can be used to prevent forwarding a signature
outside of its intended, encrypted context.
Note that the length N of the fingerprint for a version 4 key is 20
octets; for a version 5 key N is 32.
'''
__typeid__ = 0x23
@sdproperty
def version(self):
return self._version
@version.register(int)
def version_int(self, val):
self._version = val
@version.register(bytearray)
def version_bytearray(self, val):
self.version = self.bytes_to_int(val)
@sdproperty
def intended_recipient(self):
return self._intended_recipient
@intended_recipient.register(str)
@intended_recipient.register(six.text_type)
@intended_recipient.register(Fingerprint)
def intended_recipient_str(self, val):
self._intended_recipient = Fingerprint(val)
@intended_recipient.register(bytearray)
def intended_recipient_bytearray(self, val):
self.intended_recipient = ''.join('{:02x}'.format(c) for c in val).upper()
def __init__(self):
super(IntendedRecipient, self).__init__()
self.version = 4
self._intended_recipient = ""
def __bytearray__(self):
_bytes = super(IntendedRecipient, self).__bytearray__()
_bytes += self.int_to_bytes(self.version)
_bytes += self.intended_recipient.__bytes__()
return _bytes
def parse(self, packet):
super(IntendedRecipient, self).parse(packet)
self.version = packet[:1]
del packet[:1]
if self.version == 4:
fpr_len = 20
elif self.version == 5: # pragma: no cover
fpr_len = 32
else: # pragma: no cover
fpr_len = self.header.length - 1
self.intended_recipient = packet[:fpr_len]
del packet[:fpr_len]
class AttestedCertifications(Signature):
'''
(from RFC4880bis-08)
5.2.3.30. Attested Certifications
(N octets of certification digests)
This subpacket MUST only appear as a hashed subpacket of an
Attestation Key Signature. It has no meaning in any other signature
type. It is used by the primary key to attest to a set of third-
party certifications over the associated User ID or User Attribute.
This enables the holder of an OpenPGP primary key to mark specific
third-party certifications as re-distributable with the rest of the
Transferable Public Key (see the "No-modify" flag in "Key Server
Preferences", above). Implementations MUST include exactly one
Attested Certification subpacket in any generated Attestation Key
Signature.
The contents of the subpacket consists of a series of digests using
the same hash algorithm used by the signature itself. Each digest is
made over one third-party signature (any Certification, i.e.,
signature type 0x10-0x13) that covers the same Primary Key and User
ID (or User Attribute). For example, an Attestation Key Signature
made by key X over user ID U using hash algorithm SHA256 might
contain an Attested Certifications subpacket of 192 octets (6*32
octets) covering six third-party certification Signatures over <X,U>.
They SHOULD be ordered by binary hash value from low to high (e.g., a
hash with hexadecimal value 037a... precedes a hash with value
0392..., etc). The length of this subpacket MUST be an integer
multiple of the length of the hash algorithm used for the enclosing
Attestation Key Signature.
The listed digests MUST be calculated over the third-party
certification's Signature packet as described in the "Computing
Signatures" section, but without a trailer: the hash data starts with
the octet 0x88, followed by the four-octet length of the Signature,
and then the body of the Signature packet. (Note that this is an
old-style packet header for a Signature packet with the length-of-
length field set to zero.) The unhashed subpacket data of the
Signature packet being hashed is not included in the hash, and the
unhashed subpacket data length value is set to zero.
If an implementation encounters more than one such subpacket in an
Attestation Key Signature, it MUST treat it as a single Attested
Certifications subpacket containing the union of all hashes.
The Attested Certifications subpacket in the most recent Attestation
Key Signature over a given user ID supersedes all Attested
Certifications subpackets from any previous Attestation Key
Signature. However, note that if more than one Attestation Key
Signatures has the same (most recent) Signature Creation Time
subpacket, implementations MUST consider the union of the
attestations of all Attestation Key Signatures (this allows the
keyholder to attest to more third-party certifications than could fit
in a single Attestation Key Signature).
If a keyholder Alice has already attested to third-party
certifications from Bob and Carol and she wants to add an attestation
to a certification from David, she should issue a new Attestation Key
Signature (with a more recent Signature Creation timestamp) that
contains an Attested Certifications subpacket covering all three
third-party certifications.
If she later decides that she does not want Carol's certification to
be redistributed with her certificate, she can issue a new
Attestation Key Signature (again, with a more recent Signature
Creation timestamp) that contains an Attested Certifications
subpacket covering only the certifications from Bob and David.
Note that Certification Revocation Signatures are not relevant for
Attestation Key Signatures. To rescind all attestations, the primary
key holder needs only to publish a more recent Attestation Key
Signature with an empty Attested Certifications subpacket.
'''
__typeid__ = 0x25
@sdproperty
def attested_certifications(self):
return self._attested_certifications
@attested_certifications.register(bytearray)
@attested_certifications.register(bytes)
def attested_certifications_bytearray(self, val):
self._attested_certifications = val
def __init__(self):
super(AttestedCertifications, self).__init__()
self._attested_certifications = bytearray()
def __bytearray__(self):
_bytes = super(AttestedCertifications, self).__bytearray__()
_bytes += self._attested_certifications
return _bytes
def parse(self, packet):
super(AttestedCertifications, self).parse(packet)
self.attested_certifications = packet[:(self.header.length - 1)]
del packet[:(self.header.length - 1)]